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1 The Problem

We wish to calculate the local energy, defined as

EL =
1

ψ
Hψ (1)

The Hamiltonian of interest is

H = −1

2

N∑

i=1

∇2
i −

M∑

α=1

N∑

i=1

Zα
|Rα − ri|

+

N∑

i<j

1

|ri − rj |
+

M∑

α<β

1

|Rα −Rβ |
(2)

whereN is the number of electrons andM is the number of nuclei. The positions
of the nuclei are Rα and the positions of the electrons are ri.

The wavefunction is going to have the form

ψ = d1d2e
−U (3)

where d1 and d2 are Slater determinants of single particle orbitals, and U is
a Jastrow factor containing terms for electron-electron correlation (Uee) and
electron-nuclear correlation (Une). The single particle orbitals are φi(r) and the
elements of the Slater matrix are Dij = φj(ri). The Slater determinant looks
like ∣∣∣∣∣∣∣

φ1(r1) . . . φn(r1)
...

. . .
...

φ1(rn) . . . φn(rn)

∣∣∣∣∣∣∣
(4)

We assume that the single particle orbitals depend only on a single coordinate
(ie, no backflow).

2 Useful Determinant Properties

We denote the determinant by |A|.
The best way (that I know of) to compute the determinant of a matrix is

to compute the LU decomposition via LAPACK. The determinant is then the
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product of the diagonal elements (since both L and U are returned in the same
matrix, it doesn’t matter whether they belong to L or U). If overflow might
be a problem, sum the logarithms of the diagonal elements (one must take the
absolute value and keep track of the sign separately in this case.) Note that the
permutation vector (for pivoting) must be examined and the sign changed for
each permutation. Later we will see that we need the inverse of a matrix, and
the LU decomposition is also the first step in computing the inverse. (Note that
LAPACK may not be the best choice for very small matrices - one would have
to time it.)

Another way to compute the determinant is the expansion by cofactors.
This expands the determinant of an N ×N matrix into a sum of determinants
of N (N − 1)× (N − 1) matrices. As a recursive algorithm for computing the
determinant, it is not very efficient, but for analytical manipulations it is very
useful for isolating the effect of a single row or column. Define cofactors of a
matrix M to be

cij = (−1)i+j |Mij | (5)

where the matrix formed by cij is called the cofactor matrix. The matrix Mij

is an (N − 1) × (N − 1) matrix formed by removing row i and column j from
A. The determinant of A can then be written as

|A| =
∑

j

akjckj =
∑

i

aikcik (6)

for k = 1 . . .N . The transpose of the cofactor matrix is called the adjoint of A.
Now the adjoint is related to the inverse by

adj A = |A|A−1 (7)

As an alternate way to derive the following ratios (and derivatives) of de-
terminants, consider two matrices A and A1, which differ only in the first row.
The rato of the determinants is equal to the determinant of the ratios

|A1|
|A| =

∣∣∣∣
A1

A

∣∣∣∣ =
∣∣A1A

−1
∣∣ (8)

All but pieces involving the first row will give the identity matrix. The first row
then will be different from the identity, but the rest of the matrix will be the
identity matrix. Then only the element on the diagonal will contribute to the
determinant. This element comes from the dot product of the first row of A1

with the first column of A−1. In some sense, inverting the matrix “interchanges”
rows and columns.

3 Ratio of Wavefunctions

In the Metropolis algorithm, we want the ratio of wavefunctions of the trial
move and the original position. Typically only one particle is moved, which
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leads to simplifications [2]. Let us consider moving particle k from rk to r′k.

ψ(r′k)

ψ(rk)
=
d(rk)

d(r′k)
e−[U(r′k)−U(rk)] (9)

For Uee in the Jastrow factor, we need only sum over N − 1 distances involving
k. For Une, we will need to sum over all nuclei.

Expand the determinant of D(r′k) in cofactors about the kth row. Note that
then the cofactors have no dependence on r′k.

|D(r′k)| =
∑

i

φi(r
′
k)cki

=
∑

i

φi(r
′
k) |D(rk)| (D−1(rk))ik

|D(r′k)|
|D(rk)| =

∑

i

φi(r
′
k)(D−1(rk))ik

If a move is accepted, the inverse matrix can be updated in O(N 2) time
(rather than O(N3) for recomputing the inverse). The formula for updating
an inverse if only a single row (or column) changes was given by Sherman and
Morrison [5]. Let q be the ratio of determinants given above. Row k merely
needs to be updated to reflect the new determinant, D−1

kj = D−1
kj /q. The other

rows are updated as

D−1
ij = D−1

ij −
D−1
ik

q

∑

l

D−1
lj φl(r

′
k) i 6= k (10)

A more general update formula, where the updating matrix has the form of an
outer product of two vectors (rank-1 update?), is given by Bartlett [1]. These
formulae are also discussed the book by Fadeev and Fadeeva [3], where they are
put together to make the reinforcement method for inverting a matrix

4 Local Energy

Let d be the product of determinants and ∇ represent a 3N dimensional gradi-
ent. We get

∇2ψ = ∇
[
(∇d)e−U − (∇U)de−U

]

= (∇2d)e−U − 2(∇d · ∇U)e−U − (∇2U)de−U + d(∇U · ∇U)e−U

1

ψ
∇2ψ =

∇2d

d
− 2(

∇d
d
· ∇U)−∇2U +∇U · ∇U (11)

Thus the local energy is

EL =
1

2
∇2U − 1

2
∇U · ∇U − 1

2

(∇2d

d

)
+

(∇d
d

)
· ∇U + V (12)
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Also, for smarter VMC sampling and diffusion Monte Carlo we need the
quantum force, FQ = ∇ ln |ψ|2.

FQ = 2

(∇d
d

)
− 2∇U (13)

4.1 More general wavefunction

Rather than considering the Jastrow part and the determinants separately, con-
sider the wavefunction as a product of K functions

ψ =

K∏

i=0

ψi (14)

∇ψ =

K∑

j=0

∇ψj
K∏

i6=j
ψi (15)

∇2ψ =

K∑

j=0

∇2ψj

K∏

i6=j
ψi +

K∑

j=0

∇ψj
K∑

k 6=j
∇ψk

K∏

i6=k,j
ψi

1

ψ
∇2ψ =

K∑

j=0

1

ψj
∇2ψj +

K∑

j=0

K∑

k 6=j

∇ψj
ψj
· ∇ψk
ψk

(16)

=

K∑

j=0

1

ψj
∇2ψj + 2

K∑

j=0

K∑

k<j

∇ψj
ψj
· ∇ψk
ψk

(17)

5 Derivatives of the Determinant

For the gradient with respect to particle k, expand the determinant by cofactors
about row k. Then the cofactors have no rk dependence.

|D| =
∑

i

φi(rk)cki

∇k |D| =
∑

i

[∇kφi(rk)] cki

∇k |D|
|D| =

∑

i

[∇kφi(rk)]D−1
ik

∇2
k |D|
|D| =

∑

i

[
∇2
kφi(rk)

]
D−1
ik (18)

4



6 Derivatives of the Jastrow Factor

We have two terms in the Jastrow factor, Uee and Une. Now Uee depends on
relative particle coordinates, requiring a change of variables. Note that Une
depends only on the electron coordinate (the nuclear coordinate is fixed), so its
derivatives are straightforward.

Let u′ and u′′ be the first and second derivatives of u, respectively. The
gradient is

∇kUee = ∇k
∑

i<j

uee(|ri − rj |)

=
∑

i<k

∇kuee(|ri − rk|) +
∑

k<j

∇kuee(|rk − rj |)

=
∑

i<k

u′ee(rik)
ri − rk

rik
+
∑

k<j

−u′ee(rkj)
rk − rj

rkj

=
∑

i6=k
u′ee(rik)

ri − rk

rik
(19)

∇kUne =

M∑

α=1

u′ne(rkα)
rk −Rα

rkα
(20)

The Laplacian is

∇2
kUee =

∑

i6=k

2

rik
u′ee(rik) + u′′ee(rik) (21)

∇2
kUne =

M∑

α=1

2

rkα
u′ne(rkα) + u′′ne(rkα) (22)

If we sum over k and note that rik = rki, then the Uee sum can be written as a
sum over pairs ∑

k

∇2
jUee = 2

∑

i<j

2

rij
u′ee(rij ) + u′′ee(rij) (23)

7 Cusp Condition

As two Coulomb particles get close, the potential has a 1/r singularity. The
wavefunction must be of the correct form to cancel this singularity. First, con-
sider an electron and a nucleus. The relevant part of the Schrodinger equation
is [

− 1

2M
∇2
n −

1

2
∇2
e −

Ze2

r

]
ψ = Eψ (24)

whereM is the nuclear mass and Z is the nuclear charge. Assume that M � me,
so the first term can be ignored. Write the second term in spherical coordinates
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and we get

−1

2
ψ′′ − 1

r

(
Ze2ψ + ψ′

)
= Eψ (25)

In order for the singularity to cancel at small r, the term multiplying 1/r must
vanish. So we have

1

ψ
ψ′ = −Ze2 (26)

If ψ = e−cr we must have c = Ze2.
For the case of two electrons, the Schrodinger equation is

[
−1

2
∇2

1 −
1

2
∇2

2 +
e2

r12

]
ψ = Eψ (27)

Switching to relative coordinates r12 = r1 − r2 gives us
[
−∇2

12 +
e2

r12

]
ψ = Eψ (28)

Equal mass electrons with unlike spins (no antisymmetry requirement) have an
extra factor of 1/2 in the cusp condition compared with the electron-nucleus
case. So we have c = −e2/2.

In the antisymmetric case, the electrons will be in a relative p state, reducing
the cusp condition by 1/2, so c = −e2/4. Having the correct cusp for like spin
electrons gains one very little in the energy or variance, since the antisymmetry
requirement keeps them apart anyway.

8 Jastrow Factor

The simplest form of a Jastrow factor that satisfies the cusp condition is

Uee = −
∑

i<j

aerij
1 + brij

Une =
∑

i,α

Zαanriα
1 + briα

(29)

We will set ae = 1/2 and an = 1 to satisfy cusp conditions. Note that b could
be potentially different for each pair of particles (bij). The first and second
derivatives are

U ′ee = −ae
∑

i<j

1

(1 + brij)2

U ′′ee = 2ae
∑

i<j

b

(1 + brij)3

U ′ne = an
∑

i,α

Zα
(1 + briα)2

U ′ne = −2an
∑

i,α

Zαb

(1 + briα)3
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8.1 Additional terms

From a paper by Schmidt and Moskowitz [4], who use the Boys-Handy form
for the wavefunction. The terms in the previous section will satisfy the cusp
condition. These additional terms will be higher order than linear in r so as not
to disturb the cusp condition. Define r̄ as

r̄ =
br

1 + br
(30)

First let us look at the m = 2, n = 0, o = 0 term

Une = c2r̄
2 = c2

(
b2r

1 + b2r

)2

(31)

Derivatives

r̄′ =
b

(1 + br)2

r̄′′ = − 2b2

(1 + br)3

U ′ne = 2c2r̄r̄
′ = 2c2

b2r

(1 + br)3

U ′′ne = 2c2(r̄′2 + r̄r̄′′) = 2c2
(b2 − 2b3r)

(1 + br)4
(32)

8.2 Compatibility with periodic boundary conditions

In a periodic box, the wavefunction must be smooth at L/2 or there will be
a delta function spike in the local energy, which can lead to non-variational
energies. The first and second derivatives of the wavefunction should be zero
at L/2 (although, strictly, we only need the function and its first derivative to
be continuous). One approach to ensure these conditions is to use a matching
polynomial at some cutoff radius, rc ≤ L/2 [2]. Attempts to fix the previous
jastrow factors this way seemed not to work - the connection was smooth, but
then the polynomial had fairly large fluctuations between rc and L/2. Perhaps
adjusting rc would help.

The other approach is to use a jastrow factor that has the matching condi-
tions built in. The minimum set of conditions is the cusp condition at small r
and the two derivative conditions at rm ≤ L/2. This can be satisfied with a
cubic polynomial. Let y = r/rm. Then we have

u(y) = a1y + a2y
2 + a3y

3 (33)

where a1 = (cusp value) ∗ rm, a2 = −a1, and a3 = a1/3.
Variational freedom is gained by adding a general function multiplied by

y2(y− 1)3 to preserve the boundary conditions. We choose a sum of Chebyshev
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polynomials. The wavefunction is then

u(y) = a1(y − y2 +
1

3
y3) + y2(y − 1)3

∑

i

biTi(2y − 1) (34)

where the bi are variational parameters.
For the derivatives, let F = y2(y − 1)3, and T =

∑
i biTi(2y − 1). Then

u′ = a1(1− 2y + y2)/rm + F ′T + T ′F

u′′ = a1(−2 + 2y)/r2
m + F ′′T + T ′′F + 2F ′T ′

rmF
′ = 2y(y − 1)3 + 3y2(y − 1)2

r2
mF
′′ = 2(y − 1)3 + 12y(y − 1)2 + 6y2(y − 1)

(35)

i Ti(x) T ′i (x) T ′′i (x)
0 1 0 0
1 x 1 0
2 2x2 − 1 4x 4
3 4x3 − 3x 12x2 − 3 24x
4 8x4 − 8x2 + 1 32x3 − 16x 96x2 − 16

To take into account the 2y − 1 factor in the argument, multiply T ′i by 2/rm
and T ′′i by 4/r2

m.
Some runs in a box of hydrogens showed that the effect of the polynomials

was similar to reducing rm. Therefore, it would be useful to deal with rm
as a variational parameter. Of course, then we have to handle the constraint
rm ≤ L/2 during the minimization. The derivatives for u are (let a0 be the cusp
value)

∂u

∂rm
=

∂

∂rm
a0

[
x− x2/rm + x3/(3r2

m)
]

= a0

[
x2/r2

m −
2

3
x3/r3

m

]

= a0

[
y2 − 2

3
y3

]
(36)

∂2u

∂r2
m

= a0

[
−2x2/r3

m + 2x3/r4
m

]

=
a0

rm

[
−2y2 + 2y3

]
(37)

All the cross derivatives will be zero.
The simplest way to take derivatives of the rest is to note the dependence

on rm is solely through y = x/rm.

∂F

∂rm
=

∂F

∂y

∂y

∂rm
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∂2F

∂r2
m

=
∂2F

∂y2

(
∂y

∂rm

)2

+
∂F

∂y

∂2y

∂r2
m

(38)

∂y

∂rm
= −x/r2

m = −y/rm (39)

∂2y

∂r2
m

= 2x/r3
m = 2y/r2

m (40)

9 Single Particle Orbitals

9.1 Floating Gaussian

One form is

φl(r) = exp

[−(r − cl)2

w2
l

]
(41)

For a collection H2’s, cl will be put at the center between the two atoms. In
periodic boundary conditions, one must use the correct image in computing the
center. The following formula seems to work

cl = r1 +
1

2
PBC(r2 − r1) (42)

where the vector r2 − r1 is the minimum image vector.
The derivatives are

∇φl = − 2

w2
l

(r− cl)φl

∇2φl =

[
4

w4
l

(r − cl)
2 − 6

w2
l

]
φl (43)

A more general form is

φl(r) = exp

[ −(r − cl)2

w2
l + vl |r − cl|

]
(44)

Let B = w2
l + vl |r − cl|. Then B′ = vl.

The gradient is

∇φl =

[
−2(r− cl)

B
+
vl(r − cl)2

B2

r− cl
|r − cl|

]
φl

= (r− cl)

[
− 2

B
+
vl |r − cl|

B2

]
φl

=
(r− cl)

B2

[
−2w2

l − vl |r − cl|
]
φl (45)

Let ∂φ
∂r = Aφ. Then

A = −2 |r − cl|
B

+
vl(r − c)2

B2
. (46)
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∂A

∂r
= − 2

B
+

2vl |r − cl|
B2

+
2vl |r − cl|

B2
− 2v2

l (r − c)2

B3

= − 2

B
+

4vl |r − cl|
B2

− 2v2
l (r − c)2

B3
(47)

= − 2

B
− 2vlA

B
(48)

Then the gradient is

∇2φl =
1

r2

∂

∂r
r2Aφ

=
1

r2

[
2rAφ+ r2 ∂A

∂r
φ+ r2A2φ

]

=

[
2

r
A+

∂A

∂r
+A2

]
φ (49)

9.1.1 Ellipsoidal Orbitals

We generalize the orbitals so they are no longer spherical, but ellipsoidal. There
are two ways to approach it. One way is to keep the orbitals cylindrical and
oriented along the bond axis. This leads to two parameters - the width along
the axis and the width perpendicular to the axis. The argument in the exponent
then becomes

−γp
[
(r− cl) · b̂

]2
− γ⊥

∣∣∣(r− cl)− ((r − cl) · b̂)b̂
∣∣∣
2

(50)

where b is the bond vector.
The other, fully general, way is to write the width as a tensor. This leads

to 6 parameters - the orientation (3) and the widths along each axis (3). The
argument of the exponent then becomes

−(r− cl)
T · Γ · (r− cl) (51)

where

Γ =



γ11 γ12 γ13

γ12 γ22 γ23

γ13 γ23 γ33


 (52)

Or we can always orient along the z axis, use a diagonal Γ and then use
rotation matrices that transform the bond axis to the z-axis.

For the derivatives, these have the form φ = Be−A. Thus

∇φ = [∇B −B(∇A)] e−A (53)

∇2φ =
[
−∇2A+ (∇A · ∇A)

]
Be−A +

[
∇2B − 2∇A · ∇B

]
e−A (54)

For simplicity in the derivative formulas, we will replace (r−cl) with r. The
tensor form is the easiest to work with.

A = γ11r
2
x + γ22r

2
y + γ33r

2
z + 2γ12rxry + 2γ13rxrz + 2γ23ryrz (55)
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(∇A)x = 2γ11rx + 2γ12ry + 2γ13rz (56)

(∇A)y = 2γ12rx + 2γ22ry + 2γ23rz (57)

(∇A)z = 2γ23rx + 2γ32ry + 2γ33rz (58)

∇2A = 2γ11 + 2γ22 + 2γ33 (59)

A term of the form B = 1 + cr, where c is variational parameter, helped the
energy of an isolated H2 quite a bit. It’s derivatives are

∇B = cr̂

∇2B =
2c

r

We want a rotation matrices such that the bond vector is oriented in the
z direction. The current orientation of b is given by spherical angles cosφ =

x√
x2+y2

and cos θ = z√
x2+y2+z2

. First we have to rotate by φ around z, and

then by θ around y, and that should orient ~b along the z axis.

Rz =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 Ry =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ




R = RyRz =




cos θ cosφ cos θ sinφ sin θ
− sinφ cosφ 0

− sin θ cosφ − sin θ sinφ cos θ


 (60)

The argument in the exponetial is then

A = rT ·RT · Γ ·R · r = r′T · Γ · r′ = rT · Γ′ · r (61)

where r′ = R · r and Γ′ = RTΓR. Derivatives are

∇A = 2RTΓ · r′ (62)

∇2A = 2γ′11 + 2γ′22 + 2γ′33 (63)

= 2γ11 + 2γ22 + 2γ33 (64)

9.2 Atomic Orbitals

Following MoleCU (from looking at the code), we get atomic basis orbitals.
Note that x = x̂ · (r−R), and similar for y and z.

φ1s = e−γ|r−R| (65)

φ2s = |r −R| e−γ|r−R| (66)

φ3s = |r −R|2 φ1s (67)

φ2p = {x, y, z}φ1s = {x, y, z}e−γ|r−R| (68)

φ3d = {x2, y2, z2}φ1s (69)

φ3d = {xy, yz, xz}φ1s (70)
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The gradients are

∇φ1s = −γ r−R

|r −R|e
−γ|r−R| (71)

∇φ2s =
r−R

|r −R| (1− γ |r −R|) e
−γ|r−R| (72)

∇φ3s = 2(r−R)φ1s + |r −R|2∇φ1s

= (r−R) [2− γ |r −R|] e−γ|r−R| (73)

∇φ2p = x̂φ1s + x∇φ1s

=

[
x̂− xγ r−R

|r −R|

]
e−γ|r−R| (74)

∇φ3d = 2xφ1s + x2∇φ1s

=

[
2x− γx2 r−R

|r −R|

]
e−γ|r−R| (75)

∇φ3d = (x̂y + ŷx)φ1s + xy∇φ1s

=

(
x̂y + ŷx− γ r−R

|r −R|

)
e−γ|r−R| (76)

For the 2p orbitals, only the derivatives for the x oriented orbital are given.
The Laplacians are

∇2φ1s =

(
γ2 − 2γ

|r −R|

)
e−γ|r−R| (77)

∇2φ2s =

(
2

|r −R| − 4γ + γ2 |r −R|
)
e−γ|r−R| (78)

∇2φ3s = 2∇ · (r−R)φ1s + 4(r−R) · ∇φ1s + |r −R|2∇2φ1s

=
(

6− 6γ |r −R|+ γ2 |r −R|2
)
e−γ|r−R| (79)

∇2φ2p = 2x̂ · ∇φ1s + x∇2φ1s

=

[
γ2 − 4γ

|r −R|

]
xe−γ|r−R| (80)

∇2φ3d = 2φ1s + 4x · ∇φ1s + x2∇2φ1s

=

(
2 + x2γ2 − 6x2γ

|r −R|

)
e−γ|r−R| (81)

∇2φ3d = ∇2(xy)φ1s + 2∇(xy) · ∇φ1s + xy∇2φ1s

=

(
γ2 − 6γ

|r −R|

)
xye−γ|r−R| (82)

9.3 Plane Waves

The orbitals are

φl(r) =

NPW∑

j=1

clje
ikj ·r (83)
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9.4 Compatibility with periodic boundary conditions

As with the jastrow factors, we need to ensure the that the orbitals have the
correct boundary conditions at the edge of the box. We want the orbital and
its first two derivatives to be zero at rm ≤ L/2. This can be accomplished by
multiplying the orbital by a cutoff function fc. One form for fc is

fc = 1− e−γc(r−rm)2

f ′c = 2γc(r − rm)e−γc(r−rm)2

f ′′c = 2γc
[
1− 2γc(r − rm)2

]
e−γc(r−rm)2

(84)

∇fc = f ′cr̂

∇2fc =
2

r
f ′c + f ′′c

= γc

[
6− 4γc(r − rm)2 − 4

rm
r

]
e−γc(r−rm)2

(85)

10 Testing

10.1 Numerical Derivatives

It’s useful to compute the local energy numerically and compare that to the
analytic local energy. This will point out mistakes in coding or deriving. One
could compute derivatives of the various pieces for more insight.

The simplest way is to use a 6 point star formula

∇2ψ ≈ 1

h2

N∑

i

[ψ(Ri ± hx̂) + ψ(Ri ± hŷ) + ψ(Ri ± hẑ)− 6ψ(Ri)] (86)

For large systems, ψ can get quite large (or small) and over or underflow the
floating point representation. Since we ultimately will divide this expression
by ψ, the solution is to use the log of ψ and subtract logψ before taking the
exponential.

10.2 Simple Systems

We can do some simple integrals with Mathematica and compare the output.
First, we use γ = 1

w2
l

= 0.1332. For just the orbital (no correlation and no

potential) the exact value of the integral is E = 0.3996.
For H2, we can look at the Reynolds paper, with parameters γ = 1

w2
l

= 0.1332

and an e-e jastrow parameter b = 0.22459 and an e-n jastrow parameter of
b = 0.317612. The nuclei are separated by a distance of 1.401 bohr. The give a
variational energy of E = −1.162(1). I get E = −1.160(2) from 400 steps per
block and 1000 blocks.
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For H3, we can look at the Ceperley paper. The nuclei are linear, with a
separation of 1.757 bohr between them. For spin up (with 2 electrons), γ =
0.2085, and for spin down (with one electron), γ = 0.09889. The centers of the
spin down orbitals are at cl = ±2.03. The center of the spin up orbital is at
cl = 0. The e-e jastrow parameter is b = 0.2223 and the e-n jastrow parameter
is b = .3143. They give a variational energy of −1.663(4). I get −1.595(3) with
400 steps per block and 1000 blocks.

I have also compared with the Reynolds paper for Li2 and LiH, and get good
agreement.

Acknowledgements: Thanks to John Shumway for helpful discussions about
determinant properties. Also, Tim Wilkens pointed out several math errors
(Unfortunately, I don’t remember if the fixes were incorporated or not)
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