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Abstract

Standard reweighting exhibits a bias with finite sample sizes. We derive expressions to demonstrate the

bias, and explore it with a simple example.
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I. REWEIGHTING

Reweighting is used in the evaluation of integrals by Monte Carlo when the samples are drawn

from one probability distribution, but the desired averageis with respect to a different distribution.

The standard formula for evaluating averages of some estimator, O(R), over the probability

distributionQ is written as

〈O〉 =

∫

dRO(R)Q(R)
∫

dRQ(R)
≈

∑

O(Ri) (1)

Now letP be the distribution the samples are actually drawn from. Thefollowing transforma-

tion gives the standard derivation of the reweighting equations.

〈O〉 =

∫

dRO(R)Q(R)
P (R)

P (R)
∫

dRQ(R)
P (R)

P (R)
≈

∑

w(Ri)O(Ri)
∑

w(Ri)
(2)

wherew = Q/P

In the final step, the integral is approxmiated by a sum. Let usexamine the consequences of

this approximation in more detail.

II. FINITE SAMPLE SIZE BIAS

The general approach for this investigation is to compute the expectation value of the expecta-

tion value. We take the expression for the sum (Eqn. 2) for a fixed number of points and compute

its expected value by integrating over the probability distribution of the samples.

Consider theN = 1 case.

〈O〉 ≈
O(x1)w(x1)

w(x1)
= O(x1) (3)

Integratex1 overP (x), and we get

∫

dx1P (x1)O(x1) (4)

which is clearly biased. (The desired, unbiased result is
∫

dx1Q(x1)O(x1).)

Now consider theN = 2 case.

〈O〉 ≈
O(x1)w(x1) + O(x2)w(x2)

w(x1) + w(x2)
(5)
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Average overP (x1) andP (x2).

=
∫

dx1dx2P (x1)P (x2)

[

O(x1)w(x1) + O(x2)w(x2)

w(x1) + w(x2)

]

(6)

=
∫

dx1dx2
1

w(x1) + w(x2)
[O(x1)Q(x1)P (x2) + O(x2)P (x1)Q(x2)] (7)

= 2
∫

dx1O(x1)Q(x1)
∫

dx2
P (x2)

w(x1) + w(x2)
(8)

=
∫

dx1O(x1)Q(x1)F2(x1) (9)

where

F2(x) = 2
∫

dx2
P (x2)

w(x) + w(x2)
(10)

The bias term isF2(x), and the rest of the expression is the unbiased result.

The general expression forFN(x) is

FN(x1) = N
∫

∏N
i=2 dxiP (xi)
∑N

j=1 w(xj)
(11)

This expression is expected to become constant and have a value of 1 asN → ∞ (that is, we

expect the bias to vanish in this limit).

III. SIMPLE EXAMPLE

As an example, we use two gaussians in one dimension with the same width (σ = 1), but with

different centers. Take P to have a center at one (µ = 1) and Q has a center ranging from2 − 4.

In Figure 1 we see the computed value of〈x〉 as a function of the number of samples used in

the reweighting estimate. Each reweighting estimate was computed 2000 times and the average of

those estimates is shown in the graph. This graph shows the bias depends on the overlap between

the distributions and the number of samples used.

The bias functionFN is shown in Figure 2. As expected, the shape of the curve gets flatter and

closer to 1 with increasingN .

A. Further analysis

Consider the numerator and denominator separately. The denominator is the ratio of normal-

izations ofP andQ. In this example they are the same, soD should be 1.
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FIG. 1: 〈x〉 versus number of configurations for various values ofµ, with µ1 = 1.0 andµ2 = 2.0, 3.0 and
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FIG. 2: FN (x) for various values of N, withµ1 = 1.0 andµ2 = 2.0

It appears the1/D part is primarily responsible for the bias (if the observable is also non-linear,

it may have a bias as well)

The various elements are show in Figure 3. The total reweighted value (〈x ∗ w〉/〈w〉) is as we

saw previously. The numerator (〈w ∗ x〉) is noisy, but shows little bias. The denominator (〈w〉)

is close to the expected value of1. The reciprocal of the denominator (1/〈w〉), however, shows a

large bias.

IV. POSSIBLE FIXES

The obvious way to create an unbiased estimator is to define a new estimator

Õ(x) = O(x)/FN(x) (12)
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FIG. 3: Various elements the calculation versus number of configurations for µ = 4.0

Unfortunately, the computation ofFN(x) is as least as difficult as solving the original problem, if

not more so.

Other possible solutions:

• If the integrals forFN could be done in the largeN limit, the correction factor could be

computed as an expansion in1/N .

• There are ways to evaluate series expansions stochastically. Perhaps the denominator could

be expanded in a series and evaluated this way.

• A resampling method (such as the bootstrap) could be used to estimate and correct the bias

(see [1] for such a method). I have explored this approach a little. It can improve the estimate

of 1/D, but this does not translate into an improvment for the full expression. This is likely

due to correlations because the same weights are used in the numerator and denominator.

• An alternate use for a resampling method could be to compute the estimator vs.N , and

extract the answer from extrapolation to infiniteN .

• Does a techinque like black-box reweighting ([3]) suffer from this problem? The theoretical

distribution used to generate the sample points is ignored,and the sampled points themselves

are used to reconstruct an estimate of the probability distribution for the weights.

V. DIAGNOSTICS

If the problem can’t be solved, can it at least be detected?
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The overlap between two distributions is often measured by the effective number of points

Neff =
(
∑

wi)
2

∑

w2
i

(13)

The Kullback-Leibler number is also used [2].

The bias also depends on the number of points sampled, in addition to the amount of overlap,

so these diagnostics provide an incomplete measure of the amount of bias present.

Perhaps a resampling method can be used to compute the average value forN/2 and compare

to the average atN , and see if a bias is detectable?
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